Parallel Communicating Automata Systems

by

M. Sakthi Balan

Data Processing Lab
Department of Computer Science
University of Western Ontario
Contents of the Talk

- Grammar Systems

Conclusion
Contents of the Talk

Contents

❏ Grammar Systems

❏ Parallel Communicating Grammar Systems
Contents of the Talk

Contents

- Grammar Systems
- Parallel Communicating Grammar Systems
- Parallel Communicating Automata Systems
Contents of the Talk

Contents

- Grammar Systems
- Parallel Communicating Grammar Systems
- Parallel Communicating Automata Systems
- Parallel Communicating Finite State Automata
Contents of the Talk

- Grammar Systems
- Parallel Communicating Grammar Systems
- Parallel Communicating Automata Systems
- Parallel Communicating Finite State Automata
- Parallel Communicating Pushdown Automata

DPL Lab, Dept. CS, UWO
March 24, 2005
M. Sakthi Balan
Contents

- Grammar Systems
- Parallel Communicating Grammar Systems
- Parallel Communicating Automata Systems
- Parallel Communicating Finite State Automata
- Parallel Communicating Pushdown Automata
- Conclusion
Grammar Systems

- System consisting of finite number of grammars working together under a specified protocol to generate languages.

- Cooperating Distributed (CD) Grammar Systems.
 - Black-board Model.
 - At any time only one component is active.
 - Modes of derivations: t-mode, $*$-mode, $= k$-mode, $\leq k$ mode and $\geq k$-mode.

- Parallel Communicating (PC) Grammar Systems.
 - Classroom Model.
 - All components work in parallel.
 - Different variants: $\{\text{centralized, non-centralized}\} \times \{\text{returning, non-returning}\}$.
Many FSA working together.

Communication by states.

The querying component imparts a query symbol in its state information specific to the component to be queried and gets the state of the queried component after communication gets over.
- Finite number of PDA working together.
- Communication by stack
- The querying component imparts a query symbol in its stack specific to the component to be queried and gets the stack information of the queried component in its stack after communication gets over.
- There should not be any cyclic querying.
- Centralized: Only one component can query
- Non-centralized: Any component can query
- Returning: Once the communication takes place the queried component loses all the stack information and so again starts from its start stack symbol.
- Non-Returning: The stack of the queried component retains the copy even after the communication.

So totally we have four variants

\[\{ \text{centralized, non-centralized} \} \times \{ \text{returning, non-returning} \}. \]
Cooperating Distributed (CD) \(\{FSA, PDA\}\) Systems

- \(CDFSA\) - no increase in power
- \(CDPDA\) - equivalent to Turing machine in all the modes of acceptance

Parallel Communicating (PC) \(\{FSA, PDA\}\) Systems

- \(PCFSA\) - equivalent to multi-head finite state automata
- \(PCPDA\) - equivalent to Turing machine in all variants, except one which is still open
A parallel communicating pushdown automata system of degree n is a construct

$$
\mathcal{A} = (V, \Delta, A_1, A_2, \ldots, A_n, K), n \geq 1
$$

where V is the input alphabet, Δ is the alphabet of pushdown symbols, for each $1 \leq i \leq n$, $A_i = (Q_i, V, \Delta, f_i, q_i, Z_i, F_i)$ is a pushdown automaton with the set of states Q_i, the initial state $q_i \in Q_i$, the alphabet of input symbols V, the alphabet of pushdown symbols Δ, the initial pushdown symbols $Z_i \in \Delta$, the set of final states $F_i \subseteq Q_i$, and the transition mapping f_i from $Q_i \times (V \cup \{\epsilon\}) \times \Delta$ into the finite subsets of $Q_i \times \Delta^*$, $K \subseteq \{K_1, K_2, \ldots, K_n\} \subseteq \Delta$ is the set of query symbols.

The automata A_1, A_2, \ldots, A_n are called the components of the system \mathcal{A}.
If there exists only one $i, 1 \leq i \leq n$, such that for $A_i, (r, \alpha) \in f_i(q, a, A)$ with $\alpha \in \Delta^*, |\alpha|_K > 0$ for some $r, q \in Q_i, a \in V \cup \{\epsilon\}, A \in \Delta$, then the system is said to be *centralized* and A_i is said to be the *master* of the system, i.e only one of the component, called the the master, is allowed to introduce queries. For the sake of simplicity, whenever a system is centralized its master is taken to be the first component.

We define a configuration of a parallel communicating pushdown automata system as a $3n$-tuple

$$(s_1, x_1, \alpha_1, s_2, x_2, \alpha_2, \ldots, s_n, x_n, \alpha_n)$$

where for $1 \leq i \leq n$, $s_i \in Q_i$ is the current state of the component $A_i, x_i \in V^*$ is the remaining part of the input word which has not yet been read by $A_i, \alpha_i \in \Delta^*$ is the contents of the ith stack, its first letter being the topmost symbol.
The initial configuration of a parallel communicating pushdown automata system is defined as

\[(q_1, x, Z_1, q_2, x, Z_2, \cdots, \cdots, q_n, x, Z_n)\]

where \(q_i\) is the initial state of the component \(i\), \(x\) is the input word, and \(Z_i\) is the initial stack symbol of the component \(i\), \(1 \leq i \leq n\). It should be noted here that all the components receive the same input word \(x\).
Two variants of transition relations:

First one: \((s_1, x_1, B_1 \alpha_1, \ldots, s_n, x_n, B_n \alpha_n) \vdash (p_1, y_1, \beta_1, \ldots, p_n, y_n, \beta_n) \)

where \(B_i \in \Delta, \alpha_i, \beta_i \in \Delta^*, 1 \leq i \leq n \), iff one of the following two conditions holds:

(i) \(K \cap \{B_1, B_2, \ldots, B_n\} = \emptyset \) and \(x_i = a_i y_i, a_i \in V \cup \{\epsilon\}, (p_i, \beta'_i) \in f_i(s_i, a_i, B_i), \beta_i = \beta'_i \alpha_i, 1 \leq i \leq n \),

(ii) (a) for all \(i, 1 \leq i \leq n \) such that \(B_i = K_{j_i} \) and \(B_{j_i} \notin K, \beta_i = B_{j_i} \alpha_{j_i} \alpha_i \),

(b) for all other \(r, 1 \leq r \leq n \), \(\beta_r = B_r \alpha_r \), and

(c) \(y_t = x_t, p_t = s_t \), for all \(t, 1 \leq t \leq n \).
Second one:

\[(s_1, x_1, B_1 \alpha_1, \ldots, s_n, x_n, B_n \alpha_n) \vdash_r (p_1, y_1, \beta_1, \ldots, p_n, y_n, \beta_n),\]

where \(B_i \in \Delta, \alpha_i, \beta_i \in \Delta^*, 1 \leq i \leq n\), iff one of the following two conditions holds:

(i) \(K \cap \{B_1, B_2, \ldots, B_n\} = \emptyset\) and \(x_i = a_i y_i, a_i \in V \cup \{\epsilon\}, (p_i, \beta'_i) \in f_i(s_i, a_i, B_i), \beta_i = \beta'_i \alpha_i, 1 \leq i \leq n\),

(ii) (a) for all \(1 \leq i \leq n\) such that \(B_i = K_{ji}\) and \(B_{ji} \notin K\), \(\beta_i = B_{ji} \alpha_ji \alpha_i\), and \(\beta_{ji} = Z_{ji}\),

(b) for all the other \(r, 1 \leq r \leq n, \beta_r = B_r \alpha_r\), and

(c) \(y_t = x_t, p_t = s_t\), for all \(t, 1 \leq t \leq n\).

The communication between the components has more priority than the usual transitions in individual components. So, whenever a component has a query symbol in the top of its stack it has to be satisfied by the requested component.
The stack contents of the sender is retained in the case of relation \leftarrow, whereas it loses all the symbols in the case of \leftarrow_r.

A parallel communicating pushdown automata system whose computations are based on relation \leftarrow is said to be non-returning; if its computations are based on relation \leftarrow_r it is said to be returning.

There are four variants of PCPDA
The language accepted by a parallel communicating pushdown automata system, \(\mathcal{A} \) is defined as

\[
L(\mathcal{A}) = \{ x \in V^* \mid (q_1, x, Z_1, \ldots, q_n, x, Z_n) \vdash^* (s_1, \epsilon, \alpha_1, \ldots, s_n, \epsilon, \alpha_n), \\
\quad s_i \in F_i, 1 \leq i \leq n \},
\]

\[
L_r(\mathcal{A}) = \{ x \in V^* \mid (q_1, x, Z_1, \ldots, q_n, x, Z_n) \vdash^* (s_1, \epsilon, \alpha_1, \ldots, s_n, \epsilon, \alpha_n), \\
\quad s_i \in F_i, 1 \leq i \leq n \}
\]

where \(\vdash^* \) and \(\vdash_r^* \) denote the reflexive and transitive closure of \(\vdash \) and \(\vdash_r \) respectively.
Formal Definition of PCPDA

- \(\text{rcpcpa}(n) \) - for returning centralized parallel communicating pushdown automata systems of degree at most \(n \),

- \(\text{rpcpa}(n) \) - for returning non-centralized parallel communicating pushdown automata systems of degree at most \(n \),

- \(\text{cpcpa}(n) \) - for centralized parallel communicating pushdown automata systems of degree at most \(n \),

- \(\text{pcpa}(n) \) - for parallel communicating pushdown automata systems of degree at most \(n \).

If \(x(n) \) is a type of automata system, then \(X(n) \) is the class of languages accepted by pushdown automata systems of type \(x(n) \).
\begin{itemize}
 \item $PCPA(2)$ and $RPCPA(3)$ equals RE.

 \item $CPCPA(3)$ equals RE.

 \item $RCPCPA(k)$ is at least the power of k-head pushdown automata.

 \item $RCPCPA(2)$ accepts non-$ETOL$ languages, and hence $RPCPA(2)$ accepts non-$ETOL$ languages.

 \item What is the exact power of $RCPCPA/RPCPA(2)$ is it equivalent to RE or properly contained in RE?
\end{itemize}
☐ Parallel communicating pushdown automata systems with filters

☐ Parallel communicating pushdown automata systems with k-symbol communication.

☐ Defining automata systems (FSA, PDA) with only synchronizing symbols and with no communication. What will be the power of this model?