Computational Models using Peptide- Antibody Interactions

M. Sakthi Balan and Kamala Krithivasan

Theoretical Computer Science Lab

Department of Computer Science and Engineering
Indian Institute of Technology Madras
Chennai – 600036.

Organization

- Peptide Computing
- Objective of the Work
- Solving NP- Complete problems
- Modeling gate operations
- Modeling arithmetic operations
- Binding-Blocking Automata (BBA)
- Normal-forms, Complexity measures of BBA
- String Binding-Blocking Automata
- Rewriting Binding-Blocking Automata
- Conclusion

Peptide Computing

- Introduced by Hubert Hug and Rainer Schuler in 2000.
- Solved satisfiability problem using peptide- antibody interactions.

Peptide Computing

- Uses peptides and antibodies
- Operation binding of antibodies to epitopes in peptides
- Epitope The site in peptide recognized by antibody
- Highly non-deterministic
- Massive parallelism

Peptide Computing Contd..

- Peptides sequence of amino acids
- Twenty amino acids.
 Example Glycine, Valine
- Connected by covalent bonds

Peptide Computing Contd..

- Antibodies recognizes epitopes by binding to it
- Binding of antibodies to epitopes has associated power called affinity
- Higher priority to the antibody with larger affinity power

Objectives

- Using peptide computing for solving NP-Complete problems.
- To show this model is universal.
- Modeling switching operations, arithmetical operations.
- Defining automata model inspired by interactions between peptides and antibodies
 - Binding-Blocking Automata.

Objectives (Contd..)

- Analyze the power of Binding-Blocking Automata (BBA).
- Define and study some complexity measures for BBA.
- Define several variants of the model and study the acceptance power.

Solving NP- Complete Problems

Hamiltonian Path Problem

- G = (V, E) is a directed graph
- $V = \{v_1, v_2, \dots, v_n\}$ is the vertex set
- $E = \{e_{ij} \mid v_i \text{ is adjacent to } v_j\}$ is the edge set
- v_1 source vertex, v_n end vertex
- **Problem** Test whether there exists a Hamiltonian path between v_1 and v_n

Peptides Formation

- For each possible solution there is a peptide sequence formed.
- Each of the pair of epitopes present in the peptide sequence denote a possible edge of the graph.

Antibody Formation

- Three sets of antibodies are formed.
- One set to recognize all the legal edges.
- One set to recognize all edges not present in the graph.
- Last one to recognize the Hamiltonian path of the graph.

Peptide Solution Space

Algorithm

- Take all the peptides in an aqueous solution
- 2. Add antibodies Aij
- 3. Add antibodies Bij
- 4. Add labeled antibody C
- 5. If fluorescence is detected answer is *yes* or else the answer is *no*

Peptides with Antibodies

Peptide with Antibodies

Complexity

- Number of peptides = (n-2)!
- Length of peptides = O(n)
- Number of antibodies = $O(n^2)$
- Number of Bio-steps is constant

Exact Cover by 3-Sets Problem

- Instance A finite set $X = \{x_1, x_2, ..., x_n\}$, n = 3q and a collection C of 3-elements subsets of X
- Question: Does C contain an Exact Cover for X

Peptide Computing is Computationally Complete

A Turing Machine can be

simulated by a Peptide System

Universality Result

- Turing machine, $M = (Q, \Sigma, \delta, s_0, F)$
- $Q = \{q_1, q_2, \dots, q_m\}$
- $\Sigma = \{a_1, a_2, \ldots, a_l\}$
- Bis the blank symbol

Universality Result Contd..

Peptide without antibodies

Initial Configuration of Peptide

Simulating the Right Move Contd..

Complexity

- Peptide system takes O(t(n)) time
- Length of the peptide is O(s(n))
- Amount of antibodies is

$$O(m.s(n)+I.(s(n))$$

Switching Operations - OR, AND & NOT gates

Why modeling gate operations?

- Peptide and antibody formation is dependent on the problem.
- Defining basic operations makes the model independent of the problem.

Proposed Model

- Consists of a peptide sequence and some set of antibodies.
- Peptide sequence consists of five epitopes,
- Six antibodies denoted by A_1 , A_2 , B_1 , B_2 , C_{init} and C_t .
- Antibodies A_1 , A_2 , B_1 and B_2 denote the inputs.
- C_{init} denote the initial value of the result of the operation.
- C_{init} and C_f denote the output of the operation.

Proposed Model

- Epitopes for the antibodies denoting the input to bind.
- Epitope for the antibody representing the initial output to bind.
- Epitopes for the antibodies denoting the output to bind.

Peptide sequence

Peptide Sequence with Antibodies

OR Gate

- Input bits 0 and 1 are represented by the antibodies A_i and B_i respectively where $1 \le i \le 2$.
- The antibody C_{init} denotes the bit O.
- The antibody C_f (labeled antibody) denotes the bit 1.
- epitope(A_1) = {y}, epitope(A_2) = {z},
- epitope(B_1) = { yx_1 }, epitope(B_2) = { x_2z },
- epitope(C_{init}) = { x_1xx_2 }, epitope(C_f) = {x},
- $\operatorname{aff}(B_i) > \operatorname{aff}(C_{init}) > \operatorname{aff}(C_f), 1 \le i \le 2.$

OR Gate

- The output 1 occurs if at least one of the inputs is 1.
- Start with an initial output of O antibody C_{init} binds to its epitope.
- C_{init} is toggled if at least one 1 comes as an input. For this to be carried out the epitopes for the antibody C_{init} and the antibody B_i , $1 \le i \le 2$ are taken as overlapping ones.
- $\operatorname{aff}(B_i) > \operatorname{aff}(C_{init}) > \operatorname{aff}(C_f), \ 1 \le i \le 2.$
- This facilitates toggle of output bit to 1 antibody C_f binds to its epitope.

Algorithm

- Take the peptide sequence Pin an aqueous solution.
- Add the antibody C.
- Add antibodies corresponding to the input bits. For example if the first bit is 1 and the second bit is 0 then add antibodies B₁ and A₂.
- Add antibody C_f .

If the output has to be seen the antibody C_f can be gives some color so that at the end of the algorithm if fluorescence is detected the output will be I or else it will be O.

INPUT = 0, 1

INPUT = 1, 1

Other Gates

- This model has been extended to other gates – AND, NOT, NAND, NOR and XOR
- We also extend this model to simulate Boolean circuits.

Modeling Arithmetic Operations

Arithmetic Operations Proposed Model

- Consists of a peptide and set of antibodies
- Peptide sequence has n position specific epitopes
- Epitopes $ep_i = y_i x_i z_i$, y_i and z_i are switching epitopes for the i^{th} bit.

Peptide Sequence for a 5-bit number

Antibodies

•
$$\mathcal{A} = \{A_0, A_1, ..., A_{n-1}\}$$

•
$$\mathcal{B} = \{B_0, B_1, \ldots, B_{n-1}\}$$

•
$$T_{AB0} = \{T_{AB0}, T_{AB1}, \dots, T_{AB(n-1)}\}$$

•
$$T_{BA0} = \{T_{BA0}, T_{BA1}, ..., T_{BA(n-1)}\}$$

Binding Sites

For
$$A_i$$

$$X_i Z_i$$

$$X_i Z_i$$

$$X_i X_i$$

$$X_i X_i$$

$$X_i X_i$$

$$X_i Z_i X_i$$

$$T_{ABi} \longrightarrow Z_i \qquad T_{BAi} \longrightarrow y_i$$

Affinity

•
$$aff(T_{ABi}) > aff(A_i)$$

•
$$aff(T_{BAi}) > aff(B_i)$$

•
$$aff(T_{ABi}) = aff(T_{BAi})$$

What it denotes?

- A_i denotes ith bit is zero
- B_i denotes ith bit is one
- T_{ABi} used to switch ith bit from zero to one
- T_{BAi} used to switch ith bit from one to zero

Representation of Binary Numbers

- If the ith bit is 0 then the antibody A_i is bounded to the epitope y_ix_i
- If the ith bit is 1 then the antibody B_i is bounded to the epitope x_iz_i

Example

10101

Addition of Two Binary Numbers

$$A = a_{n-1}a_{n-2}...a_0$$
 $B = b_{n-1}b_{n-2}...b_0$

$$C = c_n c_{n-1} c_{n-2} \dots c_0$$

XOR

	a_i	b_{i}	C_{i}
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

Addition (Contd..)

- First step guessing equivalent to XOR gate.
- The bit c_n is initialized to zero.
- Carry propagation.

Addition (Contd..)

- Carry occurs only when both the bits a_i and b_i are
 1.
- Carry is propagated to the left until both the bits a_j and b_j (j > i) are 0.
- If no such *j* exists then propagation stops making n^{th} bit 1.
- j.j-1....i+1 is called the carry block.
- For each carry block j.j-1....i+1 invert the digits

$$(i+1 \le k \le j)$$

Algorithm

- 1. Add antibodies A_i where $a_i = 0$ and $b_i = 0$ or $a_i = 1$ and $b_i = 1$.
- 2. Add antibodies B_i where $a_i = 0$ and $b_i = 1$ or $a_i = 1$ and $b_i = 0$.
- 3. For all carry block $j_k j_k 1 ... i_k + 1$ do the following in parallel. For $i_k + 1 \le s \le j_k$
 - a) Add antibodies T_{ABs} ,
 - b) Add antibodies B_s ,
 - c) Add antibodies T_{BAS} , and
 - d) Add antibodies A_s .

Example

Example (Contd..)

101101

Example (Contd..)

101001

Algorithm

ADD(A, B, C)

- 1. XOR(A,B,C)
- BlockInversion(I₁,I₂,...I_k,C) where I_j are carry blocks and k is the number of carry blocks.

Binding-Blocking Automata

Binding-Blocking Automata

- finite control
- finite tape
- tape head
- finite tape symbols
- transition function
- partial order relation
- blocking and unblocking functions

BBA Formal Definition

$$P = (Q, V, E, \delta, q_0, R, \beta_b, \beta_{ub}, Q_{accept}, Q_{reject})$$
 where $Q = Q_{block} \cup Q_{unblock} \cup Q_{general},$ $q_0 \in Q$ (start state),
$$V \text{ is a finite set of symbols,}$$

$$E \text{ is the finite subset of } V^*,$$

$$\delta \text{ is the transition function from } Q \times E \to Q,$$

$$R \subseteq E \times E \text{ is the partial order relation,}$$

$$\beta_b \text{ is the blocking function from } Q_{block} \to 2^V,$$

$$\beta_{ub} \text{ is the unblocking function from } Q_{unblock} \to 2^V,$$

$$Q_{accept} \cup Q_{reject} \subseteq Q_{general} \text{ where } Q_{accept} \text{ is the set of accepting states and } Q_{reject} \text{ is the set of rejecting states.}$$

BBA (Contd..)

- The symbols read by the head are called marked symbols.
- The symbols blocked are called as blocked symbols.
- The head can read a sequence of symbols from its present position.
- Only those symbols which are not marked and not blocked can be read by the head.

Four kinds of Transition

- (I,b)-transition
- (I,f)-transition
- (II,b)-transition
- (II,f)-transition
- / leftmost, // locally leftmost,
- b blocked, f free

BBA - Results

- $BBA_{(l,b)} \subset BBA_{(l,f)}$
- $BBA_{(II,b)} \subseteq BBA_{(II,f)}$
- $BBA_{p,(l,x)} = BBA_{np,(l,x)}$, x = b or f,
- $BBA_{(l,x)} = SBBA_{(l,x)}$, x = b or f,
- For every language L ∈ k-SNFA there is a language
 - $L' \in BBA_{(II,b)}$ such that L can be written in the form $h^{-1}(L')$ where h is a homomorphism from L to L'.
- For every $L \in BBA_{(l,x)}$ there exists $BBA_{(ll,x)}$ P such that L(P) = L where $x \in \{b, f\}$.
- $BBA_{(l,b)} \subset BBA_{(ll,b)}$.

Complexity Issues

- Blocking number is the total number of sets of symbols blocked by the system at any point of time. Lies between 1 and 2^v.
- Blocking instant is defined as the maximum number of symbols blocked at any point of time.

Complexity Issues (Contd..)

- Blocking quotient of a subset X of alphabet is the length of the longest run from the blocking of X to the unblocking of X.
- Blocking quotient of a BBA system is defined as the maximum of blocking quotient over all the subsets of alphabet.
- P(k,m,n) denote a BBA P with k the blocking number, m the blocking instant and n blocking quotient.

Complexity Issues of BBA Results

- $REG \subseteq BBA_D(*,1,*) \subseteq BBA_D(*,2,*) \subseteq BBA_D(*,3,*) \subseteq$
 where $D \in \{(II,b),(II,f),(I,b),(I,f)\}$.
- $REG \subseteq BBA_D(1, *, *) \subseteq BBA_D(2, *, *) \subseteq BBA_D(1, *, *$
- $BBA_D(*, *, 1) = BBA_D(*, *, k), k \le 2,$ $D \in \{(I,b), (I,f), (II,b), (II,f)\}$

String Binding-Blocking Automata

- String of symbols (starting from the head's position) can be blocked from being read by the head.
- Only those symbols which are not marked and not blocked can be read by the head.
- Blocking is maximal.

Results in StrBBA

- The power of *StrBBA* in *I* transition is strictly more than *BBA* in *I* transition.
- The power of *StrBBA* in *II* transition is strictly more than languages not accepted by *BBA* in *II*.
- For every L ∈ StrBBA, there exists a randomcontext grammar RC with Context-free rules such that

$$L(RC) = L.$$

• The set of all languages accepted by strbba_l(Fin) is equal to the set of all regular languages.

Rewriting BBA

- A 2- way tape head which scans a cell to its right at a time.
- Marking is done with help of a particular set called Marker set
- There is a set of poset relations, where each poset is defined on the marker set.
- This poset relation, depending on the state, helps to replace the markers.

RBBA - Result

RBBA is Universally Complete

- Simulate a Turing machine using a RBBA
- Rewriting of Turing machine is taken care by the markers
- The states of the RBBA system is taken as 3-tuple [q,a,p]

where

- p denotes the system is in,
- q states the previous state of the system,
- a is the symbol read last.
- If a symbol a is rewritten by A when in the state p, which is got from the state q then the state-affinity has the pair (A,a) which gives more affinity to A than a.

Summary

- Solved two NP- Complete problems using peptideantibody interactions.
- Modeled switching operations and simple arithmetical operations using peptide- antibody interactions.
- Proposed an automata model binding- blocking automata.
- Studied normal-forms and complexity measures for binding-blocking automata
- Extended the definition of binding-blocking to some more variants
 - string binding-blocking automata > BBA
 - rewriting binding-blocking automata = Turing
 Machine

Conclusion

- The peptide computational model has the potential to solve difficult combinatorial problems (Note: it hides preprocessing time)
- Will it be a complete computational model or a hybrid version with silicon computers or a model used to solve some subset of problems?
- Defining basic operations for the model.
- Solving hard problems using these basic operations.
- Preprocessing time time for building peptides and antibodies is more.
- Implementation difficulties (cross-reactivity, structure of peptides)
- Can exhaustive search be replaced by other efficient methods (step-by-step elimination method)
- Turing machine simulation in which the transition is automatically taken over by the interactions between peptides and antibodies.
- Can we bound the number of antibodies in the Turning machine simulation.